
2(sinx+cosx)=ctgx+1Help!!!!!!


Ответы на вопрос

Ответ:
x1 = -pi/4 + pi*n; n ∈ Z; x2 = pi/6 + 2pi*k; k ∈ Z; x3 = 5pi/6 + 2pi*k; k ∈ Z
Объяснение:
2(sin x + cos x) = cos x/sin x + sin x/sin x
2(sin x + cos x) = (cos x + sin x)/sin x
2(sin x + cos x) - (cos x + sin x)/sin x = 0
(sin x + cos x)(2 - 1/sin x) = 0
1) sin x + cos x = 0
Делим все на cos x ≠ 0
sin x/cos x + 1 = 0
tg x = -1
x1 = -pi/4 + pi*n; n ∈ Z
2) 2 = 1/sin x
sin x = 1/2
x2 = pi/6 + 2pi*k; k ∈ Z
x3 = 5pi/6 + 2pi*k; k ∈ Z



To prove the trigonometric identity 2(sin(x) + cos(x)) = cot(x) + 1, we'll work on simplifying the right-hand side (RHS) to match the left-hand side (LHS) step by step.
First, let's express the right-hand side (RHS) in terms of sine and cosine functions.
We know that cot(x) is the reciprocal of tan(x), and we can express tan(x) as sin(x) / cos(x).
So, cot(x) = cos(x) / sin(x).
Now, we can rewrite the RHS:
cot(x) + 1 = cos(x) / sin(x) + 1
To add these two fractions, we need a common denominator. The common denominator is sin(x). So, we'll rewrite 1 with sin(x)/sin(x):
cot(x) + 1 = cos(x) / sin(x) + sin(x) / sin(x)
Now, we can combine the fractions:
cot(x) + 1 = (cos(x) + sin(x)) / sin(x)
Next, let's work on simplifying the left-hand side (LHS):
LHS = 2(sin(x) + cos(x))
To combine sin(x) and cos(x), we'll need a common factor. In this case, 2 works as a common factor:
LHS = 2(sin(x) + cos(x))
Now, we can rewrite sin(x) and cos(x) using a common factor of 2:
LHS = 2(sin(x)) + 2(cos(x))
Now, let's express sin(x) and cos(x) in terms of tan(x):
sin(x) = tan(x) / cot(x)
cos(x) = 1 / cot(x)
Substitute these into the LHS equation:
LHS = 2(tan(x) / cot(x)) + 2(1 / cot(x))
Next, let's simplify the LHS:
LHS = 2(tan(x) / cot(x)) + 2(1 / cot(x))
Now, we can combine the terms with a common denominator, which is cot(x):
LHS = (2tan(x) + 2) / cot(x)
Now, we have the LHS expressed in terms of cot(x).
Finally, compare the RHS and LHS:
RHS: cot(x) + 1 = (cos(x) + sin(x)) / sin(x)
LHS: (2tan(x) + 2) / cot(x)
Since both sides are equal to (cos(x) + sin(x)) / sin(x), the identity is proved:
2(sin(x) + cos(x)) = cot(x) + 1


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili