4sin^2x+cos^2x=5sinxcosx
Ответы на вопрос
Ответ:
To solve the trigonometric equation 4sin^2(x) + cos^2(x) = 5sin(x)cos(x), we'll first use trigonometric identities to simplify the equation. The following identities will be helpful:
- sin^2(x) + cos^2(x) = 1
- sin(2x) = 2sin(x)cos(x)
Now, let's rewrite the equation using these identities:
4sin^2(x) + cos^2(x) = 5sin(x)cos(x) 4sin^2(x) + 1 - sin^2(x) = 5sin(x)cos(x) (Using sin^2(x) + cos^2(x) = 1) 3sin^2(x) + 1 = 5sin(x)cos(x)
Next, we can replace sin^2(x) with (1 - cos^2(x)) using the first identity:
3(1 - cos^2(x)) + 1 = 5sin(x)cos(x) 3 - 3cos^2(x) + 1 = 5sin(x)cos(x) 4 - 3cos^2(x) = 5sin(x)cos(x)
Now, we can use the double-angle identity for sin(2x) to represent sin(x)cos(x) in terms of cos(2x):
sin(2x) = 2sin(x)cos(x) 2sin(x)cos(x) = sin(2x)
So, our equation becomes:
4 - 3cos^2(x) = 5sin(x)cos(x) 4 - 3cos^2(x) = 5sin(2x)
Now, we can use the fact that 4 - 3cos^2(x) = 4(1 - cos^2(x)) = 4sin^2(x) to get:
4sin^2(x) = 5sin(2x)
Now, we have a simpler equation:
4sin^2(x) - 5sin(2x) = 0
Now, let u = sin(x), so we have:
4u^2 - 5(2u) = 0 4u^2 - 10u = 0
Factor out the common term u:
u(4u - 10) = 0
Now, we have two possibilities:
- u = 0
- 4u - 10 = 0
For case 1, u = 0, which means sin(x) = 0. This occurs at x = 0 and x = π (and their multiples).
For case 2, 4u - 10 = 0, so 4u = 10, and u = 10/4 = 2.5. However, the sine function's range is between -1 and 1, so there are no solutions for this case.
Thus, the solutions to the original equation 4sin^2(x) + cos^2(x) = 5sin(x)cos(x) are x = 0 and x = π (and their multiples).
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
