
(x^2 - 2x)^9 <= (2x -x^2 -2)^9


Ответы на вопрос

x² - 2x = 2x - x² - 2
x² + x² - 2x - 2x + 2 = 0
2x² - 4x + 2 = 0
x² - 2x + 1 = 0
(x - 1)² = 0
x - 1 = 0
x = 1



To compare the two expressions and for the given inequality , we can simplify both expressions first.
Let's start with :
And now, let's simplify :
Now, we want to find the values of for which the inequality holds. To do that, we need to find the solutions to the inequality.
Subtract the second expression from the first and set it to zero to find the critical points:
We won't go through the lengthy algebraic process of solving the above equation for , but it can be done to find critical points. Once you have found the critical points, you can test intervals around those points to determine where the inequality holds true.
However, since this is a complex and computationally intensive task, I suggest using a graphing calculator or software to visualize the functions and find the regions where the inequality is satisfied. Plot both and on the same graph and see where the graphs intersect or where one is above the other. Those points will help you determine the intervals where the inequality holds true.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili