
1÷x-y - 1÷y-x - 2x÷x²-y²


Ответы на вопрос

Ответ:1÷х-у-1÷у-х-2х÷х2÷у2
1/х-у-1/у-х-2х/х2-у2
Объяснение:



To simplify the expression, let's first find common denominators for each term and then combine them.
Finding common denominators: For the first term, 1/(x - y), the common denominator is (x - y). For the second term, 1/(y - x), the common denominator is -(x - y) (notice the negative sign). For the third term, 2x/(x^2 - y^2), the common denominator is (x + y)(x - y) (difference of squares).
Writing the terms with their common denominators: 1/(x - y) - 1/(y - x) - 2x/(x^2 - y^2)
Simplifying each term:
a) 1/(x - y) - 1/(y - x): Since (y - x) = -(x - y), the expression becomes: 1/(x - y) - 1/-(x - y) => 1/(x - y) + 1/(x - y)
Now, combine the terms with the common denominator: (1 + 1)/(x - y) = 2/(x - y)
b) 2x/(x^2 - y^2): This can be simplified as follows: 2x/(x^2 - y^2) = 2x/[(x + y)(x - y)]
- Final expression: Now, combining the simplified terms from step 3, we get the final expression: 2/(x - y) - 2x/[(x + y)(x - y)]
To further simplify, we can take out the common denominator, which is (x - y), from both terms: 2/(x - y) - 2x/[(x + y)(x - y)] = (2(x + y) - 2x)/[(x + y)(x - y)]
Now, simplify the numerator: 2(x + y) - 2x = 2x + 2y - 2x = 2y
The expression becomes: 2y/[(x + y)(x - y)]
So, the simplified expression is 2y/[(x + y)(x - y)].


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili