
4cos²x-2sin²x-5cosx-4=0


Ответы на вопрос




To solve the equation 4cos²x - 2sin²x - 5cosx - 4 = 0, we can use some trigonometric identities to simplify it and then solve for the unknown variable x.
First, we'll use the identity: sin²x + cos²x = 1
Now, rewrite the equation with sin²x in terms of cos²x:
4cos²x - 2(1 - cos²x) - 5cosx - 4 = 0
Simplify further:
4cos²x - 2 + 2cos²x - 5cosx - 4 = 0
Combine like terms:
6cos²x - 5cosx - 6 = 0
Now, let's solve this quadratic equation for cosx. We can either factor it or use the quadratic formula. Let's use the quadratic formula:
The quadratic formula is given by: x = (-b ± √(b² - 4ac)) / 2a
In this equation, a = 6, b = -5, and c = -6.
Now, plug in the values:
cosx = [5 ± √((-5)² - 4 * 6 * (-6))] / (2 * 6)
cosx = [5 ± √(25 + 144)] / 12
cosx = [5 ± √169] / 12
cosx = (5 ± 13) / 12
Now, we have two possible solutions for cosx:
cosx = (5 + 13) / 12 = 18 / 12 = 3 / 2 (Not a valid solution, as the cosine function is bound between -1 and 1)
cosx = (5 - 13) / 12 = -8 / 12 = -2 / 3
Now, we can find the corresponding values of sinx using the identity sin²x + cos²x = 1:
sin²x = 1 - cos²x sin²x = 1 - (-2/3)² sin²x = 1 - 4/9 sin²x = 5/9
sinx = ±√(5/9) = ±√5/3
So, the two possible solutions for the equation are:
- x = arcsin(√5/3) + 2πn
- x = π - arcsin(√5/3) + 2πn
where n is an integer representing the number of full circles or revolutions made around the unit circle.
Note: Some of these solutions may fall outside the typical range of angles, i.e., [-π, π]. So, we use the general solutions with n to account for all possible solutions.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili