To simplify the expression (sin2a+sin2b)2+(cos2a+cos2b)2, we can expand and simplify each term individually.
Let's start with the first term, (sin2a+sin2b)2. Using the identity (a+b)2=a2+2ab+b2, we can expand this as follows:
(sin2a+sin2b)2=sin4a+2sin2asin2b+sin4b
Next, let's simplify the second term, (cos2a+cos2b)2. Again, using the identity (a+b)2=a2+2ab+b2, we have:
(cos2a+cos2b)2=cos4a+2cos2acos2b+cos4b
Now, we can combine the expanded terms:
(sin2a+sin2b)2+(cos2a+cos2b)2=sin4a+2sin2asin2b+sin4b+cos4a+2cos2acos2b+cos4b
We can further simplify this expression by grouping like terms:
(sin2a+sin2b)2+(cos2a+cos2b)2=sin4a+sin4b+cos4a+cos4b+2sin2asin2b+2cos2acos2b
Finally, we can apply trigonometric identities to simplify the remaining terms. Using the identity sin2θ+cos2θ=1, we have:
sin4a+sin4b+cos4a+cos4b=(sin2a+cos2a)(sin2a+cos2a)+(sin2b+cos2b)(sin2b+cos2b)
Simplifying further:
sin4a+sin4b+cos4a+cos4b=(1)(1)+(1)(1)=2
Therefore, the simplified expression is
0
0