Вопрос задан 13.07.2023 в 10:28. Предмет Алгебра. Спрашивает Сахаров Егор.

Точка движется прямолинейно по закону . Найти скорость точки в момент времени, когда ускорение

будет равно нулю.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Василенко Анна.

Ответ:

Объяснение:

скорость - 1ая производя пути по времени.

ускорение - 2ая производная пути по времени.

берем первую производную - скорость

v=-3*t^2/6+3*2*t

берем 2ую производную - ускорение:

a=-3*2*t/6+6=-t+6

по условию ускорение равно 0,

-t+6=0

t=6

подставляем t=6 в скорость;

v=-3*6^2/6+3*2*6=36-18=18

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи необходимо знать закон движения точки, то есть уравнение, описывающее её положение в зависимости от времени. Без этой информации невозможно точно определить скорость точки в момент времени, когда ускорение равно нулю.

Однако, если дано уравнение движения, можно использовать дифференцирование, чтобы найти момент времени, когда ускорение равно нулю, и затем вычислить скорость в этот момент.

Предположим, что уравнение движения точки задано как x(t)x(t), где xx - положение точки, а tt - время.

Для нахождения момента времени, когда ускорение равно нулю, необходимо найти такое значение tt, при котором первая производная уравнения движения равна нулю. Это можно сделать следующим образом:

  1. Найдите первую производную уравнения движения x(t)x(t) по времени tt, обозначим её как v(t)v(t). В результате получим выражение для скорости точки: v(t)=dxdtv(t) = \frac{dx}{dt}.
  2. Найдите вторую производную уравнения движения x(t)x(t) по времени tt, обозначим её как a(t)a(t). В результате получим выражение для ускорения точки: a(t)=d2xdt2a(t) = \frac{d^2x}{dt^2}.
  3. Решите уравнение a(t)=0a(t) = 0 относительно tt для определения момента времени, когда ускорение равно нулю.
  4. Вычислите значение скорости в найденный момент времени, подставив значение tt в выражение для v(t)v(t).

Если у вас есть конкретное уравнение движения, пожалуйста, предоставьте его, чтобы мы могли проиллюстрировать процесс решения на примере.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос