
Спростіть вираз sin 5a * cos a- sin a* cos 5a *


Ответы на вопрос




Для спрощення виразу, скористаємося тригонометричним тотожністю про добуток синусів двох кутів:
sin(α) * cos(β) = (1/2) * [sin(α + β) + sin(α - β)]
Застосуємо це тотожність для обох членів виразу:
sin(5α) * cos(α) - sin(α) * cos(5α) = (1/2) * [sin(5α + α) + sin(5α - α)] - (1/2) * [sin(α + 5α) + sin(α - 5α)]
Тепер спростимо аргументи синусів:
sin(5α + α) = sin(6α) sin(5α - α) = sin(4α) sin(α + 5α) = sin(6α) sin(α - 5α) = sin(-4α) = -sin(4α)
Тоді отримаємо:
(1/2) * [sin(6α) + sin(4α)] - (1/2) * [sin(6α) - sin(4α)]
Тепер зменшимо підобрані добутки:
(1/2) * sin(6α) + (1/2) * sin(4α) - (1/2) * sin(6α) + (1/2) * sin(4α)
Скоротимо подібні доданки:
(1/2) * sin(4α) + (1/2) * sin(4α) = sin(4α)
Таким чином, спрощений вираз буде:
sin(5α) * cos(α) - sin(α) * cos(5α) = sin(4α)


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili