Вопрос задан 10.07.2023 в 21:37. Предмет Алгебра. Спрашивает Ерошина Юлия.

(15+k)⋅(25,9−k)⋅k=0. Помогите, пожалуйста!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Макаров Коля.

Ответ:

относительно k

Объяснение:

решение выше


0 0
Отвечает Хабарова Полина.

Решить уравнение:

 \displaystyle \large (15+k)\cdot (25,9-k)\cdot k=0 \\\\ \displaystyle \large 15+k=0 \;\; \:  \:  ili \:  \:  \;\; 25,9-k=0 \;\; \:  \:  ili \;\; \:  \:  k=0 \\\\ \displaystyle \large k=-15 \;\; \:  \:  \:  \:  \:  ili \;\;  \:  \:  \: k=25,9 \:  \:  \:  \:  \:  \:  \:  \:  \:  \;\; ili \;\; \:  \:  k=0

Ответ: k₁ = 0, k₂ = -15, k₃ = 25,9.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить данное уравнение, нужно найти значения переменной k, при которых выражение равно нулю.

Итак, у нас есть три множителя: (15+k), (25.9-k) и k.

Уравнение (15+k)⋅(25.9−k)⋅k=0 будет равно нулю, если хотя бы один из множителей равен нулю.

  1. (15+k) = 0: Решение этого уравнения будет k = -15.

  2. (25.9-k) = 0: Решение этого уравнения будет k = 25.9.

  3. k = 0: Это тривиальное решение.

Таким образом, уравнение имеет три решения: k = -15, k = 25.9 и k = 0.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос