
Вопрос задан 09.07.2023 в 22:40.
Предмет Алгебра.
Спрашивает Копжасар Дарига.
Определи число корней квадратного уравнения 2x2+19x+2=0


Ответы на вопрос

Отвечает Шарапов Никита.
Ответ:
Объяснение:
2x2+19x+2=0
D=19*19-4*2*2=345
так как D>0, то уравнение имеет два корня!



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для определения числа корней квадратного уравнения, можно использовать дискриминант. Дискриминант квадратного уравнения ax^2 + bx + c = 0 вычисляется по формуле D = b^2 - 4ac.
В данном случае, у нас есть квадратное уравнение 2x^2 + 19x + 2 = 0, где a = 2, b = 19 и c = 2.
Вычислим дискриминант: D = (19)^2 - 4(2)(2) = 361 - 16 = 345.
Дискриминант D равен 345.
Теперь, определим число корней в зависимости от значения дискриминанта:
- Если D > 0, то квадратное уравнение имеет два различных вещественных корня.
- Если D = 0, то квадратное уравнение имеет один вещественный корень (корень с кратностью два).
- Если D < 0, то квадратное уравнение не имеет вещественных корней.
В данном случае, так как D = 345, что является положительным числом, квадратное уравнение 2x^2 + 19x + 2 = 0 имеет два различных вещественных корня.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili