
1) х² + 12 х – 64 = 0 2) х² -11 х + 30 = 0 3) х² + 14 х + 24 = 0 4) 2х² + 3 = 3 - 7х 5) ( 3х – 1)
(х + 2) = 20 РЕБЯЯТ УМОЛЯЮ КИДАЮ ВСЕ БАЛЛЫ

Ответы на вопрос

Ответ:
Объяснение:
1)
2)
3)
4)
5)



- To solve the equation x² + 12x - 64 = 0, we can use the quadratic formula. The quadratic formula states that for an equation in the form ax² + bx + c = 0, the solutions for x can be found using the formula:
x = (-b ± √(b² - 4ac)) / (2a)
In this case, a = 1, b = 12, and c = -64. Plugging these values into the formula, we have:
x = (-12 ± √(12² - 4(1)(-64))) / (2(1))
Simplifying further:
x = (-12 ± √(144 + 256)) / 2 x = (-12 ± √400) / 2 x = (-12 ± 20) / 2
This gives us two possible solutions:
x1 = (-12 + 20) / 2 = 8/2 = 4 x2 = (-12 - 20) / 2 = -32/2 = -16
Therefore, the solutions to the equation x² + 12x - 64 = 0 are x = 4 and x = -16.
- To solve the equation x² - 11x + 30 = 0, we can again use the quadratic formula. Comparing the equation to the form ax² + bx + c = 0, we have a = 1, b = -11, and c = 30. Applying the quadratic formula:
x = (-(-11) ± √((-11)² - 4(1)(30))) / (2(1)) x = (11 ± √(121 - 120)) / 2 x = (11 ± √1) / 2
Simplifying further:
x = (11 ± 1) / 2
This gives us two possible solutions:
x1 = (11 + 1) / 2 = 12/2 = 6 x2 = (11 - 1) / 2 = 10/2 = 5
Therefore, the solutions to the equation x² - 11x + 30 = 0 are x = 6 and x = 5.
- To solve the equation x² + 14x + 24 = 0, we can once again use the quadratic formula. In this case, a = 1, b = 14, and c = 24. Applying the quadratic formula:
x = (-14 ± √(14² - 4(1)(24))) / (2(1)) x = (-14 ± √(196 - 96)) / 2 x = (-14 ± √100) / 2
Simplifying further:
x = (-14 ± 10) / 2
This gives us two possible solutions:
x1 = (-14 + 10) / 2 = -4/2 = -2 x2 = (-14 - 10) / 2 = -24/2 = -12
Therefore, the solutions to the equation x² + 14x + 24 = 0 are x = -2 and x = -12.
- To solve the equation 2x² + 3 = 3 - 7x, we need to simplify it first.
By moving all terms to one side of the equation, we have:
2x² + 7x - 3 = 0
Now we can solve this quadratic equation using the quadratic formula. Here, a = 2, b = 7, and c = -3. Applying the quadratic formula:
x = (-7 ± √(7² - 4(2)(-3))) / (2(2)) x = (-7 ± √(49 + 24)) / 4 x = (-7 ± √73) / 4
So the solutions to the equation 2x² + 3 = 3 - 7x are:
x = (-7 + √73) / 4 x = (-7 - √73) / 4
- To solve the equation (3x - 1)(x + 2) = 20, we can first expand the left side of the equation:
3x² + 6x - x - 2 = 20 3x² + 5x - 2 = 20
Now, we can move all terms to one side to form a quadratic equation:
3x² + 5x - 22 = 0
We can solve this quadratic equation using the quadratic formula. Here, a = 3, b = 5, and c = -22. Applying the quadratic formula:
x = (-5 ± √(5² - 4(3)(-22))) / (2(3)) x = (-5 ± √(25 + 264)) / 6 x = (-5 ± √289) / 6 x = (-5 ± 17) / 6
This gives us two possible solutions:
x1 = (-5 + 17) / 6 = 12/6 = 2 x2 = (-5 - 17) / 6 = -22/6 = -11/3
Therefore, the solutions to the equation (3x - 1)(x + 2) = 20 are x = 2 and x = -11/3.
I hope that helps! If you have any further questions, please let me know.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili