X^4+8x^3+17x^2+10x=0
Ответы на вопрос
        Ответ: x=0 x=-5 x=-2 x=-1
Объяснение:

            To solve the equation , we can factor out an from the equation to simplify it:
Now, we have two possible cases:
Case 1:
If , then the equation is satisfied.
Case 2:
To solve the cubic equation , we can try to find its rational roots using the rational root theorem.
The possible rational roots of the equation are of the form , where is a factor of the constant term (10), and is a factor of the leading coefficient (1).
The factors of 10 are , and the factors of 1 are .
Let's try these possible values for and see if any of them satisfy the equation:
For :
For :
Therefore, is a root of the equation.
Now, we can divide the cubic equation by using polynomial long division or synthetic division to find the remaining quadratic equation:
The quotient is , which is a quadratic equation.
To solve the quadratic equation , we can factor it:
This gives us two additional roots: and .
Therefore, the solutions to the original equation are , , , and .
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			