
X^4+8x^3+17x^2+10x=0


Ответы на вопрос

Ответ: x=0 x=-5 x=-2 x=-1
Объяснение:




To solve the equation , we can factor out an from the equation to simplify it:
Now, we have two possible cases:
Case 1:
If , then the equation is satisfied.
Case 2:
To solve the cubic equation , we can try to find its rational roots using the rational root theorem.
The possible rational roots of the equation are of the form , where is a factor of the constant term (10), and is a factor of the leading coefficient (1).
The factors of 10 are , and the factors of 1 are .
Let's try these possible values for and see if any of them satisfy the equation:
For :
For :
Therefore, is a root of the equation.
Now, we can divide the cubic equation by using polynomial long division or synthetic division to find the remaining quadratic equation:
The quotient is , which is a quadratic equation.
To solve the quadratic equation , we can factor it:
This gives us two additional roots: and .
Therefore, the solutions to the original equation are , , , and .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili