
Установи (не выполняя построения) взаимное расположение графиков линейных функций y=3x и y=3x−6.


Ответы на вопрос

Ответ:
Параллельные прямые
Объяснение:
Оба уравнения задают прямые, а уравнение 3х=3х-6 решений не имеет, а значит прямые не имеют пересечений



Для установления взаимного расположения графиков линейных функций y = 3x и y = 3x - 6, давайте рассмотрим их уравнения и их графики.
- Уравнение первой функции: y = 3x
- Уравнение второй функции: y = 3x - 6
Обе функции имеют одинаковый коэффициент наклона (3), что означает, что они параллельны. Однако, их свободные члены различаются. У первой функции свободный член равен 0, а у второй функции -6. Это означает, что график второй функции смещен вниз на 6 единиц относительно графика первой функции.
Визуально, оба графика будут параллельными прямыми линиями, где график функции y = 3x - 6 будет находиться ниже графика функции y = 3x на 6 единиц.
Если бы вы построили эти графики, вы увидели бы, что они параллельны и идут вдоль друг друга, с графиком y = 3x наверху и графиком y = 3x - 6 под ним.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili