 
Докажите классическое неравенство:
 0
        0
         0
        0
    Ответы на вопрос
 
        Ответ:
Объяснение:
Для отрицательных a и b неравенство очевидно. Докажем для случая a,b>0:
Последнее неравенство выполняется для любых неотрицательных a и b, что с учетом ОДЗ исходного неравенства говорит о том, что оно справедливо для любых положительных a и b, причем равенство достигается при a=b>0
 0
                    0
                     0
                    0
                 
        Ответ:
(см. объяснение)
Объяснение:
Рассмотрим внимательно получившееся выражение: это формула сокращённого умножения: разность квадратов. Учитывая это, перепишем выражение:
Выражение в квадрате всегда не отрицательно, поэтому равенство выше всегда верно.
Доказано.
 0
                    0
                     0
                    0
                 
            Конечно, я готов помочь! Однако у вас не указано, какое именно классическое неравенство вы имеете в виду. В математике существует множество классических неравенств, таких как неравенство Коши-Буняковского, неравенство треугольника, неравенство АМ-ГМ и многие другие.
Пожалуйста, уточните, о каком неравенстве идет речь, и я с удовольствием помогу вам доказать его.
 0
                    0
                     0
                    0
                Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			