Вопрос задан 05.07.2023 в 19:21. Предмет Алгебра. Спрашивает Шокбар Алмат.

Брошены две игральные кости. Какова вероятность того, что на первой кости выпадет четное число

очков, а на второй нечетное?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зарецкий Степан.

Здравствуйте!

Ответ:

0,25

Объяснение:

Вероятность выпадения четного числа на первой кости равна 0,5 (Благоприятными числами будут 2, 4 и 6 (т.е. 3 благоприятных исхода), всего исходов 6: 3/6=0,5)

Вероятность выпадения нечетного числа на второй кости равна 0,5 (Благоприятными числами будут 1, 3 и 5 (т.е. 3 благоприятных исхода), всего исходов 6: 3/6=0,5)

По теореме об умножении несовместимых вероятностей, вероятность выпадения двух нужных событий равна произведению событий:

P=0.5*0.5=0.25

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи можно использовать принцип умножения вероятностей. Вероятность выпадения четного числа на игральной кости равна 1/2, так как на обычной шестигранной кости есть три четных числа (2, 4 и 6) и три нечетных числа (1, 3 и 5).

Поэтому вероятность выпадения четного числа на первой кости равна 1/2, а вероятность выпадения нечетного числа на второй кости также равна 1/2.

Согласно принципу умножения вероятностей, вероятность выполнения обоих событий (четное на первой кости и нечетное на второй кости) равна произведению вероятностей каждого из событий:

Вероятность = Вероятность(четное на 1-й кости) * Вероятность(нечетное на 2-й кости) = 1/2 * 1/2 = 1/4.

Итак, вероятность того, что на первой кости выпадет четное число очков, а на второй нечетное число очков, составляет 1/4 или 25%.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос