
Sin(3п/2-2x)=-√2 / 2


Ответы на вопрос

Упростим показатель степени, так как нас интересует только его четность:



To solve the trigonometric equation sin(3π/2 - 2x) = -√2 / 2, you can follow these steps:
Identify the reference angle: The reference angle is the angle between the terminal side of the angle and the x-axis in the standard position. In this case, the reference angle would be π/4 radians because sin(π/4) = √2 / 2.
Rewrite the equation: The equation sin(3π/2 - 2x) = -√2 / 2 can be rewritten as sin(π/2 + π - 2x) = -√2 / 2. This is because sin(3π/2) = -1.
Apply the sine addition formula: The sine addition formula states that sin(A + B) = sin(A)cos(B) + cos(A)sin(B). In this case, A = π/2, B = -2x.
sin(π/2 + (-2x)) = sin(π/2)cos(-2x) + cos(π/2)sin(-2x) 1 * cos(-2x) + 0 * sin(-2x) = cos(-2x) cos(-2x) = -√2 / 2
Solve for x: Since cos(-2x) = cos(2x) and cos(2x) is positive in the second and third quadrants, we need to find the angles that satisfy this equation in those quadrants.
Using the unit circle or a calculator, find the angles θ in the second and third quadrants where cos(θ) = -√2 / 2.
In the second quadrant: θ = 3π/4 In the third quadrant: θ = 5π/4
Now, set up equations for the angles: 2x = 3π/4 and 2x = 5π/4
Solve for x in each equation: x = 3π/8 and x = 5π/8
So, the solutions for the equation sin(3π/2 - 2x) = -√2 / 2 are x = 3π/8 and x = 5π/8, as long as x falls in the appropriate domains of those solutions.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili