Вопрос задан 05.07.2023 в 11:17. Предмет Алгебра. Спрашивает Копаев Максим.

площадь треугольника можно вычислить по формуле s= ab*sin a/2 найдите длину стороны b если a= 26

sin a=5\13 s=41
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мартыненко Маша.

Ответ: 8.2

Объяснение:

S = \frac{1}{2} \cdot a\cdot b \cdot sin\alpha \Rightarrow\\b = \frac{2S}{a\cdot sin\alpha}\\b = \frac{82}{26 \cdot \frac{5}{13}} = \frac{41}{10} = 8.2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления длины стороны b треугольника по заданным данным, мы можем воспользоваться формулой:

s = (ab * sin(a)) / 2

Известны следующие значения:

a = 26 sin(a) = 5/13 s = 41

Подставим значения в формулу и найдем длину стороны b:

41 = (26b * (5/13)) / 2

Для упрощения вычислений, можно сначала умножить обе стороны уравнения на 2:

82 = 26b * (5/13)

Далее, домножим обе стороны на 13/5:

(82 * 13) / 5 = 26b

После вычислений получим:

b = (82 * 13) / (5 * 26) b = 1066 / 130 b ≈ 8.2

Таким образом, длина стороны b при заданных значениях будет примерно равна 8.2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос