
Cos6x-12cos^3x=4-9cosx


Ответы на вопрос




To solve the equation cos(6x) - 12cos^3(x) = 4 - 9cos(x), we can simplify it by using trigonometric identities and then apply algebraic techniques to solve for x.
Let's simplify the equation step by step:
Start by applying the identity cos(2x) = 2cos^2(x) - 1. cos(6x) can be expressed as cos(2 * 3x), so we have: cos(6x) = 2cos^2(3x) - 1
Substitute this expression back into the original equation: 2cos^2(3x) - 1 - 12cos^3(x) = 4 - 9cos(x)
Rearrange the equation to get all terms on one side: 2cos^2(3x) - 12cos^3(x) - 9cos(x) + 5 = 0
Now, let's solve the simplified equation using algebraic techniques:
Factor out cos(x) from the terms that contain cos(x): cos(x)(2cos^2(3x) - 12cos^2(x) - 9) + 5 = 0
Factor out cos(x) from the first term inside the parentheses: cos(x)[2cos^2(3x) - (6cos^2(x) + 6sin^2(x)) - 9] + 5 = 0
Simplify the expression inside the brackets: cos(x)(2cos^2(3x) - 6cos^2(x) - 6sin^2(x) - 9) + 5 = 0
Apply the identity sin^2(x) = 1 - cos^2(x): cos(x)(2cos^2(3x) - 6cos^2(x) - 6(1 - cos^2(x)) - 9) + 5 = 0
Simplify the expression inside the parentheses: cos(x)(2cos^2(3x) - 6cos^2(x) - 6 + 6cos^2(x) - 9) + 5 = 0
Combine like terms: cos(x)(2cos^2(3x) + 6cos^2(x) - 15) + 5 = 0
Factor out a common factor from the terms inside the parentheses: cos(x)(2cos^2(3x) + 6cos^2(x) - 15) + 5 = 0
Now, we have two possibilities for the equation to be true:
First possibility: cos(x) = 0 This gives us x = (2n + 1) * π/2, where n is an integer.
Second possibility: 2cos^2(3x) + 6cos^2(x) - 15 = 0
To solve the second possibility, we can simplify the equation further:
Divide the equation by 2: cos^2(3x) + 3cos^2(x) - 7.5 = 0
Multiply the equation by 2 to eliminate fractions: 2cos^2(3x) + 6cos^2(x) - 15 = 0
Notice that this equation is the same as the expression inside the parentheses in step 11.
Therefore, the solutions to the equation cos(6x) - 12cos^3(x)


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili