2 sin^2 x +3 cos x - 3 = 0
Ответы на вопрос
The equation you've provided is a trigonometric equation involving both sine and cosine functions. To solve for the values of x that satisfy the equation, we can follow these steps:
- Use the trigonometric identity: sin^2(x) + cos^2(x) = 1.
- Express sin^2(x) in terms of cos(x) using the identity: sin^2(x) = 1 - cos^2(x).
- Substitute the expression for sin^2(x) into the equation.
Let's solve it step by step:
Given equation: 2sin^2(x) + 3cos(x) - 3 = 0
Step 1: sin^2(x) = 1 - cos^2(x)
Step 2: 2(1 - cos^2(x)) + 3cos(x) - 3 = 0 2 - 2cos^2(x) + 3cos(x) - 3 = 0
Step 3: -2cos^2(x) + 3cos(x) - 1 = 0
Now we have a quadratic equation in terms of cos(x). To solve for cos(x), we can factor or use the quadratic formula:
-2cos^2(x) + 3cos(x) - 1 = 0
Let's use the quadratic formula: cos(x) = (-B ± √(B^2 - 4AC)) / 2A
Where A = -2, B = 3, and C = -1.
cos(x) = (-3 ± √(3^2 - 4*(-2)(-1))) / (2(-2)) cos(x) = (-3 ± √(9 - 8)) / (-4) cos(x) = (-3 ± √1) / (-4) cos(x) = (-3 ± 1) / (-4)
This gives two possible solutions for cos(x):
- cos(x) = -1
- cos(x) = -1/2
Now, we can find the corresponding values of x for these solutions:
For cos(x) = -1: x = π
For cos(x) = -1/2: Since cosine is negative in the 2nd and 3rd quadrants, we have: x = 2π/3 (2nd quadrant) x = 4π/3 (3rd quadrant)
So, the solutions for the equation 2sin^2(x) + 3cos(x) - 3 = 0 are: x = π, 2π/3, 4π/3
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
