Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ильина Соня.
решение : полм гл тмвволтд
00
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
To solve the inequalities, we'll work through each one step by step:
(2x−5)2−0.5x<(2x−1)(2x+1)−15
First, expand both sides of the inequality:
4x2−20x+25−0.5x<4x2−1−15
Simplify the terms:
4x2−20.5x+25<4x2−16
Subtract 4x2 from both sides:
−20.5x+25<−16
Subtract 25 from both sides:
−20.5x<−41
Now, divide both sides by -20.5 (remember to reverse the inequality because we're dividing by a negative number):
x>20.541
Simplify:
x>2
So, the solution for the first inequality is x>2.
(12−1)(3x+1)<1+(6x+2)2
Simplify the left side:
11(3x+1)<1+(6x+2)2
Distribute 11:
33x+11<1+(6x+2)2
Expand (6x+2)2:
33x+11<1+36x2+24x+4
Combine like terms:
33x+11<36x2+24x+5
Subtract 33x and 11 from both sides:
0<36x2−9x−6
Divide the entire inequality by 3 to simplify:
0<12x2−3x−2
Now, we have a quadratic inequality. We can solve it by factoring or using the quadratic formula. Factoring might not work easily in this case, so let's use the quadratic formula:
The quadratic formula states that for an equation ax2+bx+c=0, the solutions are given by:
x=2a−b±b2−4ac
In our case, a=12, b=−3, and c=−2. Plugging these values in:
x=2⋅123±(−3)2−4⋅12⋅(−2)
Simplify the discriminant:
x=243±9+96
x=243±105
Since we're looking for values of x that make the inequality 0<12x2−3x−2 true, we need to find where this quadratic is positive. This means we'll consider the values of x that satisfy:
x>243−105 and x<243+105
These are the two intervals of x that satisfy the inequality.