
2 cos(x + п/3)= ≥ √2


Ответы на вопрос

Ответ:
рисунок




To solve the inequality , you can follow these steps:
Start by isolating the cosine term:
Divide both sides by 2:
Next, you need to determine the values of that satisfy this inequality. You can do this by considering the values of for which it is greater than or equal to .
Recall that .
So, your inequality becomes:
Now, we need to find the values of that make greater than or equal to . To do this, we'll consider the intervals where is greater than or equal to .
The general form for the cosine function is:
This means that is an even function, and its values repeat every radians. So, you can add or subtract multiples of to without changing the inequality.
is equivalent to:
, where is an integer.
Now, you can solve for by taking the arccosine of both sides:
Finally, isolate by subtracting from both sides:
So, the solution to the inequality is:
Where is an integer that can take any value (positive or negative) to cover all possible solutions. This inequality represents an infinite number of solutions for .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili