
Sinxcosx>1/4 ????????


Ответы на вопрос

Ответ:
(см. объяснение)
Объяснение:
Неравенство решено!



To determine whether the inequality sin(x)cos(x) > 1/4 holds true for all values of x, we can analyze it algebraically and graphically.
First, let's consider the inequality:
sin(x)cos(x) > 1/4
To analyze this inequality, we can use the properties of the sine and cosine functions. The maximum value of the product sin(x)cos(x) occurs when sin(x) = cos(x). In this case, sin(x)cos(x) = (sin(x))^2, and it reaches its maximum value of 1/2 when sin(x) = cos(x) = 1/sqrt(2).
So, the inequality can be rewritten as:
(sin(x))^2 > 1/4
Now, we can take the square root of both sides:
|sin(x)| > 1/2
This means that sin(x) must be greater than 1/2 or less than -1/2 for the inequality sin(x)cos(x) > 1/4 to hold.
Graphically, the sine function oscillates between -1 and 1, and the values that are greater than 1/2 or less than -1/2 are within certain intervals. So, the inequality sin(x)cos(x) > 1/4 will hold for values of x within these intervals.
In summary, sin(x)cos(x) > 1/4 is true for values of x where sin(x) is greater than 1/2 or less than -1/2. You can find these intervals by examining the graph of the sine function or by solving the inequalities involving sin(x).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili