
(2-c) (3-c)≥000000000000


Ответы на вопрос

Ответ:
правельно
Объяснение:




The expression you've provided, "(2-c)(3-c)≥000000000000," appears to be a comparison or inequality statement. However, it seems like you've included a large number of zeros on the right side of the inequality sign, which doesn't affect the inequality itself.
To solve the inequality "(2-c)(3-c)≥0," you can follow these steps:
Expand the left side of the inequality: (2-c)(3-c) = 6 - 5c + c^2
Rewrite the inequality: 6 - 5c + c^2 ≥ 0
Rearrange the terms: c^2 - 5c + 6 ≥ 0
Factor the quadratic expression: (c - 2)(c - 3) ≥ 0
Now, you have factored the expression, and you can find the solution by examining when the factors are greater than or equal to zero. To do this, you can use a sign chart or consider the intervals where each factor is positive or zero.
The solutions are as follows:
When (c - 2) and (c - 3) are both greater than or equal to zero:
- c ≥ 3
- c ≥ 2
When (c - 2) and (c - 3) are both less than or equal to zero:
- c ≤ 3
- c ≤ 2
When (c - 2) is greater than or equal to zero, and (c - 3) is less than or equal to zero:
- c ≥ 2
- c ≤ 3 (Note: This is the intersection of the two cases above.)
When (c - 2) is less than or equal to zero, and (c - 3) is greater than or equal to zero:
- c ≤ 2
- c ≥ 3 (This case has no valid solutions since it's contradictory.)
So, the valid solution for the inequality (2-c)(3-c) ≥ 0 is: c ≤ 2 or c ≥ 3


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili