Вопрос задан 27.06.2023 в 14:11. Предмет Алгебра. Спрашивает Тучинов Очир.

Для каких x выполняется неравенство -4x^2-1>0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гусейнов Фарид.

Ответ:

Ни для каких

Объяснение:

-4x²-1>0 ,-4x² +(-1)>0

решений нет тк -4x²<0

-1<0. Сумма отрицательных не может быть больше 0

0 0
Отвечает Осипчик Максим.

Объяснение:

Поскольку левая часть всегда отрицательна, утверждение ложно для любого значения Х.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти значения x, для которых выполняется неравенство -4x^2 - 1 > 0, давайте решим его по шагам.

  1. Сначала добавьте 1 к обеим сторонам неравенства:

-4x^2 - 1 + 1 > 0 + 1

Это упростит неравенство:

-4x^2 > 1

  1. Теперь разделите обе стороны на -4, но помните, что при делении на отрицательное число неравенство меняет направление:

(-4x^2) / (-4) < 1 / (-4)

x^2 < -1/4

  1. Теперь возьмем квадратный корень обеих сторон (учтите, что x^2 всегда неотрицательно, поэтому нам нужно будет взять комплексные числа):

x < ±√(-1/4)

Квадратный корень из отрицательного числа - это комплексное число, обозначаемое как "i". Таким образом:

x < ±(i/2)

Итак, неравенство -4x^2 - 1 > 0 выполняется для комплексных чисел x, которые удовлетворяют условию x < ±(i/2).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос