
A) -2 < -2x + 5 < 3 б) (3-3x)(x-2)(x+7)<0


Ответы на вопрос

Ответ:
лови
Объяснение:




To solve these inequalities, we'll work on each of them separately:
A) -2 < -2x + 5 < 3
First, let's isolate -2x in the middle part of the inequality:
-2 < -2x + 5 < 3
Subtract 5 from all parts of the inequality:
-2 - 5 < -2x < 3 - 5
-7 < -2x < -2
Now, divide all parts by -2. Remember that when you multiply or divide by a negative number, you must reverse the direction of the inequality signs:
(-7)/(-2) > (-2x)/(-2) > (-2)/(-2)
7/2 > x > 1
So, the solution for the inequality -2 < -2x + 5 < 3 is 1 < x < 7/2.
B) (3-3x)(x-2)(x+7) < 0
To solve this inequality, we'll use the concept of sign changes at the roots of each factor. First, we find the roots by setting each factor equal to zero:
- 3 - 3x = 0 => 3x = 3 => x = 1
- x - 2 = 0 => x = 2
- x + 7 = 0 => x = -7
Now, we create a number line and mark these roots:
---o---o---o---
Now, test a point in each interval created by these roots. You can use any value in each interval to determine the sign of the expression. Let's test a value to the left of -7 (e.g., -8):
For x < -7: (3-3x)(x-2)(x+7) = (positive)(negative)(negative) = positive
Now, test a value between -7 and 1 (e.g., 0):
For -7 < x < 1: (3-3x)(x-2)(x+7) = (positive)(negative)(positive) = negative
Finally, test a value greater than 1 (e.g., 3):
For x > 1: (3-3x)(x-2)(x+7) = (negative)(positive)(positive) = negative
So, the solution to the inequality (3-3x)(x-2)(x+7) < 0 is x < -7, -7 < x < 1, and x > 2.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili