
Lg(x-3)+lg(2x+1)-lg(5x-3)=0


Ответы на вопрос

смотри.........................




To solve the equation lg(x - 3) + lg(2x + 1) - lg(5x - 3) = 0, we can use logarithmic properties to simplify and solve for x.
First, recall the properties of logarithms:
- lg(a) + lg(b) = lg(ab)
- lg(a) - lg(b) = lg(a/b)
Using these properties, we can simplify the equation:
lg(x - 3) + lg(2x + 1) - lg(5x - 3) = 0
Combine the first two logarithms using property 1:
lg((x - 3)(2x + 1)) - lg(5x - 3) = 0
Now, we have a single logarithm on the left side of the equation. To eliminate the logarithm, we can rewrite the equation in exponential form:
(x - 3)(2x + 1) = 5x - 3
Now, let's solve for x:
Expand and simplify the left side of the equation:
2x^2 - 5x - 3 = 5x - 3
Now, move all terms to one side of the equation:
2x^2 - 5x - 3 - 5x + 3 = 0
Combine like terms:
2x^2 - 10x = 0
Factor out 2x:
2x(x - 5) = 0
Now, set each factor equal to zero and solve for x:
2x = 0 x = 0
x - 5 = 0 x = 5
So, there are two possible solutions for the equation:
x = 0 and x = 5
You can check both solutions by substituting them back into the original equation to make sure they satisfy it.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili