
|x + 3| < 4 pzpzpzpzpzpzpzpzpz


Ответы на вопрос

Ответ:
Объяснение:
|x + 3| < 4
-4 < x + 3 < 4 | - 3
-4 - 3 < x < 4 - 3
-7 < x < 1
О т в е т : x ∈ (-7; 1)



It appears that you have a mathematical inequality involving absolute value:
|x + 3| < 4
To solve this inequality, you can consider two cases: one where the expression inside the absolute value is positive, and another where it is negative.
Case 1: x + 3 is positive In this case, you don't need to change the absolute value, so the inequality becomes:
x + 3 < 4
Now, subtract 3 from both sides of the inequality:
x < 4 - 3 x < 1
So, for this case, the solution is x < 1.
Case 2: x + 3 is negative When x + 3 is negative, you need to negate the absolute value to make it positive:
-(x + 3) < 4
Now, multiply both sides by -1, which reverses the inequality:
x + 3 > -4
Next, subtract 3 from both sides:
x > -4 - 3 x > -7
So, for this case, the solution is x > -7.
Now, you have two separate solutions:
- x < 1
- x > -7
To express the combined solution, you can use the "and" operator (∩) since both conditions must be satisfied:
-7 < x < 1
This is the solution to the inequality |x + 3| < 4.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili