First, you can apply the double-angle formula for the sine function:
sin(2θ)=2sin(θ)cos(θ)
In your expression, θ=20∘, so:
sin(40∘)=2sin(20∘)cos(20∘)
Next, use the sum-to-product formula for sine:
sin(A+B)=sin(A)cos(B)+cos(A)sin(B)
In your case, A=40∘ and B=80∘, so:
sin(40∘+80∘)=sin(40∘)cos(80∘)+cos(40∘)sin(80∘)
Now, since you have sin(40∘)=2sin(20∘)cos(20∘) from step 1, you can substitute this into the equation from step 2:
2sin(20∘)cos(20∘)cos(80∘)=sin(40∘)cos(80∘)+cos(40∘)sin(80∘)
You can now calculate the values of sin(40∘) and cos(80∘) and cos(40∘) and sin(80∘) using the trigonometric identities:
sin(40∘)=sin(2⋅20∘)=2sin(20∘)cos(20∘) (from the double-angle formula for sine)
cos(80∘)=cos(2⋅40∘)=2cos2(40∘)−1
cos(40∘)=cos(2⋅20∘)=2cos2(20∘)−1
sin(80∘)=sin(2⋅40∘)=2sin(40∘)cos(40∘) (from the double-angle formula for sine)
Substitute these values into the equation:
2sin(20∘)cos(20∘)cos(80∘)=(2sin(20∘)cos(20∘))(2cos2(40∘)−1)+(2cos2(20∘)−1)(2sin(40∘)cos(40∘))
Calculate each of these components separately:
2sin(20∘)cos(20∘)=sin(40∘)
2sin(40∘)cos(40∘)=sin(80∘)
cos2(40∘) and cos2(20∘) can be calculated using the Pythagorean identity for cosine: cos
0
0