Вопрос задан 22.06.2023 в 22:03. Предмет Алгебра. Спрашивает Давлетшина Даяна.

Решите систему уравнения с двумя переменными методом подставки {5х +у=15, {3х+4у=26​

Смотреть ответ viktoria1448 viktoria1448 5х+у=15 3х+4у=26 у=15-5х 3х+4(15-5х)=26 3х+60-20х=26 3х-20х=26-60 -17х=-34 х=2 у=15-5*2 у=15-10 у=5 Ответ: (2; 5) Удачи❤️❤️❤️
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Вы правильно решили систему уравнений методом подстановки. Рассмотрим ваши шаги более подробно:

Исходные уравнения системы:

  1. 5x + y = 15
  2. 3x + 4y = 26

Сначала мы можем выразить y из первого уравнения:

y = 15 - 5x

Теперь подставим это выражение во второе уравнение:

3x + 4(15 - 5x) = 26

Раскроем скобки:

3x + 60 - 20x = 26

Теперь объединим похожие члены:

(3x - 20x) + 60 = 26

-17x + 60 = 26

Теперь выразим x:

-17x = 26 - 60 -17x = -34

Теперь разделим обе стороны на -17:

x = -34 / -17 x = 2

Теперь, когда у нас есть значение x, мы можем найти значение y, используя первое уравнение:

y = 15 - 5x y = 15 - 5 * 2 y = 15 - 10 y = 5

Итак, решение системы уравнений:

x = 2 y = 5

Ответ: (2, 5).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос