
F(x)=(5x^3 -1)^2017 ×(2020x^7 +1)^5 +x^27 +14 A)12 B)13 C)15 D)14


Ответы на вопрос

Ответ:
B) 13
Объяснение:
∩Oy: x = 0
(0 - 1)^2017×(0 + 1)^5 + 0 + 14 = - 1 × 1 + 14 = 13



To find the degree of the polynomial function F(x), we need to determine the highest power of x in the expression.
In the expression:
F(x) = (5x^3 - 1)^2017 × (2020x^7 + 1)^5 + x^27 + 14
The highest power of x will come from the term with the highest power in the two parenthetical expressions. The first term has (5x^3)^2017, and the second term has (2020x^7)^5. So, we need to determine the highest power between these two terms:
(5x^3)^2017 = 5^2017 * (x^3)^2017 = 5^2017 * x^(3 * 2017) = 5^2017 * x^6051
(2020x^7)^5 = 2020^5 * (x^7)^5 = 2020^5 * x^(7 * 5) = 2020^5 * x^35
Now, compare the powers of x:
- The highest power of x in the first term is x^6051.
- The highest power of x in the second term is x^35.
- The highest power of x in the third term is x^27.
The degree of the polynomial is the highest power of x among these terms, which is x^6051. Therefore, the degree of the polynomial function F(x) is 6051.
Since the answer choices do not include 6051, the answer should be D) 14. However, it's important to note that the degree of a polynomial is the highest power of the variable, and in this case, it's 6051. The answer choices seem to be unrelated to the degree of the polynomial.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili