
Розв'язати рівняння: корінь23-x=x-3


Ответы на вопрос

Объяснение:



Щоб розв'язати дане рівняння, спростимо його:
√(23 - x) = x - 3
Спершу, піднесемо обидві сторони до квадрата, щоб позбутися кореня:
(√(23 - x))^2 = (x - 3)^2
23 - x = (x - 3)^2
Тепер розглянемо квадрат справа:
(x - 3)^2 = x^2 - 6x + 9
Замінимо це у рівнянні:
23 - x = x^2 - 6x + 9
Тепер переносимо всі терміни на одну сторону, щоб отримати квадратне рівняння:
x^2 - 6x + x - 3 - 23 + 9 = 0
x^2 - 5x - 17 = 0
Тепер спробуємо розв'язати це квадратне рівняння. Можна використовувати квадратну формулу:
x = (-b ± √(b^2 - 4ac)) / (2a)
У нашому випадку a = 1, b = -5, і c = -17. Підставимо ці значення у формулу:
x = (-(-5) ± √((-5)^2 - 4(1)(-17))) / (2(1))
x = (5 ± √(25 + 68)) / 2
x = (5 ± √93) / 2
Отже, маємо два корені:
x₁ = (5 + √93) / 2 x₂ = (5 - √93) / 2
Це є розв'язками заданого рівняння.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili