Вопрос задан 21.06.2023 в 03:08. Предмет Алгебра. Спрашивает Петрова Екатерина.

Первый трактор доехал до центра города из точки А за 3ч, а второй трактор за 2.5ч из точки Б.

Расстояние от точки А до центра равно расстоянию от точки Б до центра. Расстояние от А до Б 120км. Найти скорости двух тракторов​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рубчинский Дима.

Ответ:

120:3= 40км/ час

120:2.5=48км/час

Объяснение:

V=s:t

0 0
Отвечает Орехова Ангелика.

Дано:

t1=3 часа

t2=2,5 часа

S1=S2

S=120 км

Найти:

V1-?

V2-?

Решение:

V1=S1/t1

V2=S2/t2

S1=S2=S/2

1)S1=S2=120/2=60 км

2)V1=60/3=20 км/ч

3)V2=60/2,5=24 км/ч

Ответ:

Скорость первого трактора (V1) = 20 км/ч

Скорость второго трактора (V2) = 24 км/ч


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that the first tractor traveled from point A to the city center in 3 hours, while the second tractor traveled from point B to the city center in 2.5 hours. The distance from point A to the city center is equal to the distance from point B to the city center, and the distance between points A and B is 120 km. We need to find the speeds of the two tractors.

Solution

Let's assume the speed of the first tractor is v1 and the speed of the second tractor is v2.

We can use the formula: speed = distance / time to find the speeds of the tractors.

From the given information, we know that the distance from point A to the city center is equal to the distance from point B to the city center. Let's call this distance d.

We also know that the time taken by the first tractor to travel from point A to the city center is 3 hours, and the time taken by the second tractor to travel from point B to the city center is 2.5 hours.

Using the formula speed = distance / time, we can write the following equations:

For the first tractor: v1 = d / 3 [[1]]

For the second tractor: v2 = d / 2.5 [[2]]

We also know that the distance between points A and B is 120 km.

Using the formula speed = distance / time, we can write the following equation:

v1 = 120 / t1 [[3]]

where t1 is the time taken by the first tractor to travel from point A to point B.

Similarly, we can write the following equation:

v2 = 120 / t2 [[4]]

where t2 is the time taken by the second tractor to travel from point B to point A.

Since the total time taken by both tractors is equal to the sum of their individual times, we have:

t1 + t2 = 3 + 2.5 = 5.5 [[5]]

Now, we have a system of equations (equations 1, 2, 3, 4, and 5) that we can solve to find the speeds of the two tractors.

Let's solve the system of equations:

From equations 1 and 3, we can write:

d / 3 = 120 / t1

Cross-multiplying, we get:

d * t1 = 3 * 120

Simplifying, we have:

d * t1 = 360 [[6]]

Similarly, from equations 2 and 4, we can write:

d / 2.5 = 120 / t2

Cross-multiplying, we get:

d * t2 = 2.5 * 120

Simplifying, we have:

d * t2 = 300 [[7]]

Now, let's solve equations 6 and 7 simultaneously:

Multiplying equation 6 by 2.5 and equation 7 by 3, we get:

2.5 * d * t1 = 2.5 * 360

3 * d * t2 = 3 * 300

Simplifying, we have:

6.25 * d * t1 = 900

9 * d * t2 = 900

Dividing both sides of the first equation by 6.25 and the second equation by 9, we get:

d * t1 = 144

d * t2 = 100

Now, we can substitute the values of d * t1 and d * t2 into equation 5:

t1 + t2 = 5.5

Substituting the values, we get:

144 / d + 100 / d = 5.5

Combining the fractions, we have:

(144 + 100) / d = 5.5

Simplifying, we get:

244 / d = 5.5

Cross-multiplying, we have:

244 = 5.5 * d

Dividing both sides by 5.5, we get:

d = 244 / 5.5

Simplifying, we have:

d = 44.3636...

Now, we can substitute the value of d into equations 1 and 2 to find the speeds of the tractors:

From equation 1:

v1 = d / 3

Substituting the value of d, we get:

v1 = 44.3636... / 3

Simplifying, we have:

v1 ≈ 14.7889...

From equation 2:

v2 = d / 2.5

Substituting the value of d, we get:

v2 = 44.3636... / 2.5

Simplifying, we have:

v2 ≈ 17.7454...

Therefore, the speed of the first tractor is approximately 14.79 km/h and the speed of the second tractor is approximately 17.75 km/h.

Answer

The speed of the first tractor is approximately 14.79 km/h and the speed of the second tractor is approximately 17.75 km/h.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос