Вопрос задан 20.06.2023 в 19:43. Предмет Алгебра. Спрашивает Иванова Анастасия.

Знайдіть найбільше і найменше значення функції f(x)=x⁵ на проміжку 1) [-3;3]2) [-2;0] 3) [1;

+нескінченність]​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лис Илья.
3) {1+ нескінченність}
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження найбільшого і найменшого значення функції f(x) = x⁵ на заданих проміжках, потрібно обчислити значення функції в границях цих проміжків та знайти максимальне і мінімальне з них.

1) Проміжок [-3;3] Обчислимо значення функції при x = -3: f(-3) = (-3)⁵ = -3 * -3 * -3 * -3 * -3 = -243.

Обчислимо значення функції при x = 3: f(3) = 3⁵ = 3 * 3 * 3 * 3 * 3 = 243.

Таким чином, найбільше значення функції на проміжку [-3;3] дорівнює 243, а найменше значення -243.

2) Проміжок [-2;0] Обчислимо значення функції при x = -2: f(-2) = (-2)⁵ = -2 * -2 * -2 * -2 * -2 = -32.

Обчислимо значення функції при x = 0: f(0) = 0⁵ = 0.

Таким чином, найбільше значення функції на проміжку [-2;0] дорівнює 0, а найменше значення -32.

3) Проміжок [1; +нескінченність] На проміжку [1; +нескінченність] функція f(x) = x⁵ приймає лише додатні значення, так як п'ята степінь будь-якого додатного числа завжди буде додатньою. Таким чином, найбільше значення функції на цьому проміжку буде +нескінченність, а найменше значення відсутнє.

Отже, найбільше і найменше значення функції f(x) = x⁵ на заданих проміжках такі:

1) Проміжок [-3;3]: найбільше значення 243, найменше значення -243. 2) Проміжок [-2;0]: найбільше значення 0, найменше значення -32. 3) Проміжок [1; +нескінченність]: найбільше значення +нескінченність, найменше значення відсутнє.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос