Вопрос задан 19.06.2023 в 05:28. Предмет Алгебра. Спрашивает Борщов Ваня.

X^2+3x=4 найдите x МНН СЕЙЧАС НАДО ПЖПЖПЖ​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Костырин Андрей.

x^2+3x=4\\x^2+3x-4=0\\x^2+4x-x-4=0\\x(x+4)-(x+4)=0\\(x+4)(x-1)=0\\x+4=0,x-1=0\\x_{1}=-4,x_{2}=1

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения уравнения x^2 + 3x = 4 и нахождения значения x, мы можем использовать различные методы, включая методы факторизации, метод полного квадрата или метод квадратного корня. Давайте попробуем решить это уравнение методом полного квадрата.

Метод полного квадрата:

1. Приведем уравнение к виду, где коэффициент при x^2 равен 1. Для этого вычтем 4 с обеих сторон уравнения: x^2 + 3x - 4 = 0

2. Теперь мы хотим превратить левую часть уравнения в квадратный трином. Для этого нам нужно добавить и вычесть половину квадрата коэффициента при x: x^2 + 3x + (3/2)^2 - (3/2)^2 - 4 = 0

Разложим квадратный трином: (x + 3/2)^2 - 9/4 - 4 = 0

Упростим: (x + 3/2)^2 - 25/4 = 0

3. Теперь мы имеем уравнение вида (a^2 - b^2) = 0, где a = (x + 3/2) и b = 5/2. Мы можем применить формулу разности квадратов: (a - b)(a + b) = 0

Применим формулу: (x + 3/2 - 5/2)(x + 3/2 + 5/2) = 0

Упростим: (x - 1)(x + 4) = 0

4. Теперь мы имеем два линейных уравнения: x - 1 = 0 или x + 4 = 0

Решим каждое уравнение отдельно: x - 1 = 0 => x = 1 x + 4 = 0 => x = -4

5. Итак, уравнение x^2 + 3x = 4 имеет два решения: x = 1 и x = -4.

Ответ: Уравнение x^2 + 3x = 4 имеет два решения: x = 1 и x = -4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос