
ПОМОГИТЕ ПОЖАЛУЙСТА СРОЧНО НУЖНО ПРОШУ!!! Исследовать функцию и построить график: 1)f(x)=х4-7х2+12
2) f(x)=x4-6x2+8

Ответы на вопрос

Ответ:
Объяснение:
!!!!!!!!!!!!!!!!!!!!!!!!







Function Analysis and Graph Plotting
Let's analyze and plot the given functions:
1. Function 1: - The function is: f(x) = x^4 - 7x^2 + 12
2. Function 2: - The function is: f(x) = x^4 - 6x^2 + 8
Analysis of Function 1:
To analyze the function f(x) = x^4 - 7x^2 + 12, we can start by finding its critical points, which are the points where the derivative is zero.The derivative of the function f(x) with respect to x is given by: f'(x) = 4x^3 - 14x
To find the critical points, we set the derivative equal to zero and solve for x: 4x^3 - 14x = 0 Factor out x: x(4x^2 - 14) = 0 Solving for x, we get x = 0 and x = ±√(14/4) = ±√(7/2)
Now, we can use the second derivative test to determine the nature of these critical points.
The second derivative of f(x) is: f''(x) = 12x^2 - 14
Plugging the critical points into the second derivative, we find: f''(0) = -14 (indicating a local maximum) f''(√(7/2)) = 12(7/2) - 14 = 21 - 14 = 7 (indicating a local minimum) f''(-√(7/2)) = 12(7/2) - 14 = 21 - 14 = 7 (indicating a local minimum)
So, the function has a local maximum at x = 0 and local minima at x = ±√(7/2).
Analysis of Function 2:
For the function f(x) = x^4 - 6x^2 + 8, we can follow a similar process to analyze it.The derivative of the function f(x) with respect to x is given by: f'(x) = 4x^3 - 12x
Setting the derivative equal to zero and solving for x, we find the critical points at x = 0 and x = ±√(12/4) = ±√3.
Using the second derivative test, we find: f''(0) = 0 (indicating a possible point of inflection) f''(√3) = 12(3) - 12 = 36 - 12 = 24 (indicating a local minimum) f''(-√3) = 12(3) - 12 = 36 - 12 = 24 (indicating a local minimum)
So, the function has local minima at x = ±√3 and a possible point of inflection at x = 0.
Graph Plotting:
Let's plot the graphs of both functions to visualize their behavior.```python import numpy as np import matplotlib.pyplot as plt
x = np.linspace(-3, 3, 400) y1 = x4 - 7*x2 + 12 y2 = x4 - 6*x2 + 8
plt.figure(figsize=(10, 6)) plt.plot(x, y1, label='f(x) = x^4 - 7x^2 + 12') plt.plot(x, y2, label='f(x) = x^4 - 6x^2 + 8') plt.xlabel('x') plt.ylabel('f(x)') plt.title('Graphs of the Given Functions') plt.legend() plt.grid(True) plt.show() ```
The graph will visually represent the behavior of the functions f(x) = x^4 - 7x^2 + 12 and f(x) = x^4 - 6x^2 + 8, showing their critical points, minima, and maxima.
I hope this analysis and graph plotting help! If you have any further questions or need additional assistance, feel free to ask.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili