Вопрос задан 13.06.2023 в 20:29. Предмет Алгебра. Спрашивает Асанов Алмат.

Розкладіть квадратний тричлен на лінійні множники -6x² + x + 1​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Квасина Анастасия.

Ответ:

-6x²+x+1=(x+1/3)(x-1/2)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб розкласти квадратний тричлен на лінійні множники, нам потрібно знайти його корені. Використовуючи формулу дискримінанту, ми можемо обчислити, чи має цей тричлен дійсні корені.

Формула дискримінанту для квадратного тричлена ax² + bx + c виглядає так: Δ = b² - 4ac

У нашому випадку, a = -6, b = 1 і c = 1. Підставимо ці значення у формулу:

Δ = (1)² - 4(-6)(1) = 1 + 24 = 25

Дискримінант Δ дорівнює 25. Так як Δ > 0, це означає, що наш квадратний тричлен має два дійсних корені.

Формула для знаходження коренів квадратного тричлена виглядає так: x₁,₂ = (-b ± √Δ) / (2a)

Підставимо значення a, b і Δ у формулу:

x₁,₂ = (-1 ± √25) / (2(-6)) = (-1 ± 5) / (-12)

Таким чином, отримуємо два корені: x₁ = (-1 + 5) / (-12) = 4 / (-12) = -1/3 x₂ = (-1 - 5) / (-12) = -6 / (-12) = 1/2

Тепер, коли ми знаходимо корені, ми можемо розкласти квадратний тричлен на лінійні множники. Кожен корінь відповідає одному лінійному множнику. Тому, розкладемо -6x² + x + 1 на лінійні множники:

-6x² + x + 1 = -6(x - (-1/3))(x - (1/2))

Таким чином, розкладений вигляд квадратного тричлена на лінійні множники буде: -6x² + x + 1 = -6(x + 1/3)(x - 1/2)

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос