Вопрос задан 10.06.2023 в 04:50. Предмет Алгебра. Спрашивает Lotsmanova Diana.

Упростите выражение: (2a-4)(4a^2-8a+16) помогите пожалуйста

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Височанський Назар.

Ответ:

2(2a-4)(2a^2-4a+8) = 2(4a^3-16a+16) = 8a^3 - 32a + 32

Отже, вираз (2a-4)(4a^2-8a+16) можна спростити до 8a^3 - 32a + 32.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы упростить данное выражение, мы можем использовать распределительный закон умножения.

(2a - 4)(4a^2 - 8a + 16) = 2a * (4a^2 - 8a + 16) - 4 * (4a^2 - 8a + 16)

Теперь выполним умножение:

2a * (4a^2 - 8a + 16) = 8a^3 - 16a^2 + 32a -4 * (4a^2 - 8a + 16) = -16a^2 + 32a - 64

Теперь сложим полученные результаты:

(2a - 4)(4a^2 - 8a + 16) = 8a^3 - 16a^2 + 32a - 16a^2 + 32a - 64

Для удобства, мы можем сгруппировать подобные члены:

(2a - 4)(4a^2 - 8a + 16) = 8a^3 + (-16a^2 - 16a^2) + (32a + 32a) - 64

Теперь можно объединить коэффициенты при одинаковых степенях переменной a:

(2a - 4)(4a^2 - 8a + 16) = 8a^3 - 32a^2 + 64a - 64

Итак, упрощенное выражение равно 8a^3 - 32a^2 + 64a - 64.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос