
5(y+3)(y-1)-4=(3+2y)в кв + y в кв


Ответы на вопрос




Let's solve the equation step by step:
First, let's expand the expressions on both sides of the equation:
5(y + 3)(y - 1) - 4 = (3 + 2y)² + y²
Next, let's simplify and multiply the terms within the parentheses:
5(y² + 2y - 3) - 4 = (3 + 2y)² + y²
Now, distribute 5 to the terms inside the parentheses:
5y² + 10y - 15 - 4 = (3 + 2y)² + y²
Combine like terms on the left side:
5y² + 10y - 19 = (3 + 2y)² + y²
Next, square the binomial (3 + 2y):
5y² + 10y - 19 = (9 + 12y + 4y²) + y²
Simplify the right side by combining like terms:
5y² + 10y - 19 = 9 + 12y + 4y² + y²
Rearrange the terms by moving all the terms to one side of the equation:
5y² + 10y - 19 - 9 - 12y - 4y² - y² = 0
Combine like terms on the left side:
(5y² - 4y² + y²) + (10y - 12y) - (19 + 9) = 0
Simplify the left side:
2y² - 2y - 28 = 0
Now, the equation is in standard quadratic form (ax² + bx + c = 0), where: a = 2, b = -2, c = -28
We can solve this quadratic equation by factoring, completing the square, or using the quadratic formula. Let's solve it using the quadratic formula:
The quadratic formula states that for an equation in the form ax² + bx + c = 0, the solutions for x are given by:
x = (-b ± √(b² - 4ac)) / (2a)
Applying this formula to our equation:
x = (-(-2) ± √((-2)² - 4 * 2 * (-28))) / (2 * 2)
Simplifying further:
x = (2 ± √(4 + 224)) / 4
x = (2 ± √228) / 4
Since we're looking for real solutions, we can simplify this further:
x = (1 ± √57) / 2
Therefore, the solutions to the equation are:
x₁ = (1 + √57) / 2 x₂ = (1 - √57) / 2


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili