
Вопрос задан 09.06.2023 в 12:54.
Предмет Алгебра.
Спрашивает Бауэр Павел.
Среднее арифметическое пяти чисел равно 2x. Если 14<4x<20, какова сумма этих пяти чисел?


Ответы на вопрос

Отвечает Шепеленко Лёша.
Відповідь:
7<2x<10
S/5=2x
7<S/5<10
35<S<50
сумм чисел больше 35, но меньше 50
Пояснення:



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Дано, что среднее арифметическое пяти чисел равно 2x. Пусть эти пять чисел равны a, b, c, d и e. Тогда можно записать уравнение:
(a + b + c + d + e) / 5 = 2x
Умножим обе части уравнения на 5:
a + b + c + d + e = 10x
Также дано, что 14 < 4x < 20. Разделим все части неравенства на 4:
14/4 < x < 20/4
7/2 < x < 5
Теперь можем использовать это ограничение для нахождения диапазона возможных значений для суммы пяти чисел. Подставим минимальное и максимальное значение для x в уравнение:
Когда x = 7/2:
a + b + c + d + e = 10 * (7/2) = 35
Когда x = 5:
a + b + c + d + e = 10 * 5 = 50
Таким образом, сумма пяти чисел может быть любым значением в интервале от 35 до 50.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili