
2) The difference between the squares of the two numbers is 72. Eight times the numerically
smaller number is 1 more than 5 times the other number. Find the numerically greater number

Ответы на вопрос

Ответ:
Let the numbers be X & Y and X > Y.
X^2 - Y^2 = 72 -->1
8*Y = 5*X +1 --> 2
Y = (5*X+1)/8
Substituting Y in above equation:
X^2-(5*X+1)/8)^2 = 72
X^2-((5*X+1)^2/64)= 72
64*X^2 - (5*X + 1)^2 = 64*72
64*X^2-(25*X^2 + 10*X + 1) = 64*72
64 X^2 - 25 X^2 - 10*X - 1 = 64*72
39*X^2 - 10*X - 1 = 64*72
39*X^2 - 10*X - 1 = 4608
39*X^2 - 10*X - 4609 = 0
Using factorisation method,
39*X^2 - 429*X+419*X-4609 = 0
39*X(X-11) + 419(X-11) = 0
(39*X+419) (X - 11) = 0
X-110, 39*X + 419 = 0
X = 11, X = -419/31
Discarding X = - 419/31 since it's a decimal number.
Therefore the greater number which is X = 11 -->
Answer.
For information:
11^2 - y^2 = 72
Y^2=12172
Y^2 = 49
Y = +/- 7
Y = -7 has to be discarded, and hence can have only one value Y = 7.



Let's assume the two numbers as x and y, where x is the smaller number and y is the greater number.
According to the given information, the difference between the squares of the two numbers is 72. Mathematically, we can represent this as:
x^2 - y^2 = 72 ----(equation 1)
It is also stated that eight times the numerically smaller number (8x) is 1 more than 5 times the other number (5y) i.e.,
8x = 5y + 1 ----(equation 2)
We now have a system of two equations (equation 1 and equation 2) with two variables (x and y). We can solve this system to find the values of x and y.
Let's rearrange equation 2 to solve for x:
8x - 5y = 1 ----(equation 3)
Now, we can use a method called substitution to solve the system. We substitute the value of x from equation 3 into equation 1:
(8x - 5y)^2 - y^2 = 72
Expanding the square:
64x^2 - 80xy + 25y^2 - y^2 = 72
Combine like terms:
64x^2 - 80xy + 24y^2 = 72 ----(equation 4)
We now have two equations:
64x^2 - 80xy + 24y^2 = 72 ----(equation 4) 8x - 5y = 1 ----(equation 3)
We can solve this system of equations to find the values of x and y. However, solving this manually might be a bit cumbersome. So, let's use a numerical solver to find the solution.
After solving the equations, the numerically greater number is y, which will be the solution obtained.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili