Вопрос задан 18.05.2023 в 11:40. Предмет Алгебра. Спрашивает Пузанов Захар.

(1-x)(x-2)меньше 0 решите неравенство

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хижан Настя.
(1-x)(x-2)<0
(1-x)(x-2)=0
x=1
x=2
Методом интервалов решаем 
__-__1__+__2__-___
x принадлежит (- бесконечность ;-1)(2;+ бесконечность)
Ответ (- бесконечность ;-1)(2;+ бесконечность)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить это неравенство, нам нужно определить значения x, при которых выражение (1-x)(x-2) меньше нуля.

Первым шагом мы можем найти значения x, при которых выражение равно нулю. Это происходит, когда один из множителей равен нулю:

1 - x = 0 или x - 2 = 0

Решим каждое уравнение:

1 - x = 0 => x = 1

x - 2 = 0 => x = 2

Теперь мы можем разбить интервал числовой прямой на три части, используя эти точки: x < 1, 1 < x < 2 и x > 2.

Выберем тестовую точку из каждого интервала и проверим знак выражения (1-x)(x-2):

  • При x = 0: (1 - 0)(0 - 2) = 1 * (-2) = -2, что меньше нуля.
  • При x = 1.5: (1 - 1.5)(1.5 - 2) = (-0.5)(-0.5) = 0.25, что больше нуля.
  • При x = 3: (1 - 3)(3 - 2) = (-2)(1) = -2, что меньше нуля.

Исходя из результатов, мы можем сделать следующие выводы:

(1-x)(x-2) < 0, когда x принадлежит интервалу (1, 2).

Таким образом, решением данного неравенства является интервал (1, 2).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос