Вопрос задан 16.05.2023 в 15:57. Предмет Алгебра. Спрашивает Фролов Николай.

Помогите упростить выражение: (Косинус(3пи\2-альфа) + косинус(пи + альфа)) \ (2 * синус(альфа -

пи\2) * косинус(-альфа) + 1)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пасечник Алина.
(-sina-cosa)/(-2cosacosa+1)=-(sina+cosa)/(-cos2a)=(sina+cosa)/cos2a=
=(sina+cosa)/((sina+cosa)(sina-cosa)=1/((sina-cosa)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разложим данное выражение на более простые составляющие, используя тригонометрические тождества.

  1. Заменим углы на эквивалентные значения:

    • Косинус(3π/2 - α) = Синус(α)
    • Косинус(π + α) = -Косинус(α)
    • Синус(α - π/2) = -Косинус(α)
  2. Подставим новые значения в выражение: (Синус(α) - Косинус(α)) / (2 * (-Косинус(α)) + 1)

  3. Упростим числитель: Синус(α) - Косинус(α) = √(1 - Косинус^2(α)) - Косинус(α) = √(1 - (1 - Синус^2(α))) - Косинус(α) = √(Синус^2(α)) - Косинус(α) = |Синус(α)| - Косинус(α)

  4. Упростим знаменатель: 2 * (-Косинус(α)) + 1 = -2 * Косинус(α) + 1

Таким образом, упрощенное выражение будет: ( |Синус(α)| - Косинус(α) ) / ( -2 * Косинус(α) + 1 )

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос