
(x^4 +1)(x^2 +2x-15)>0


Ответы на вопрос

(x⁴ + 1)(x² + 2x - 15) > 0
Заметим, что x⁴ + 1 > 0 при любых x, значит, первая скобка на знак влиять не будет и её можно отбросить:
x² + 2x - 15 > 0
x² + 2x + 1 - 16 > 0
(x + 1)² - 4² > 0
(x + 1 - 4)(x + 1 + 4) > 0
(x - 3)(x + 5) > 0
+ - +
--------------(-5)-------------------------(3)---------------------------> x
\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Ответ: x ∈ (-∞; -5) U (3; +∞).



We can factor the left-hand side of the inequality as follows:
(x^4 + 1)(x^2 + 2x - 15) = (x^2 - 3)(x^2 + 4)(x + 5)(x - 3) > 0
To determine the sign of the expression, we need to examine the sign of each factor separately.
(x^2 - 3) is negative for x in the range -√3 < x < √3, and positive for x outside this range.
(x^2 + 4) is always positive.
(x + 5) is positive for x > -5 and negative for x < -5.
(x - 3) is negative for x < 3 and positive for x > 3.
To determine the sign of the entire expression, we need to consider all the possible combinations of signs for the factors.
Case 1: (x^2 - 3) < 0 and (x^2 + 4) > 0
This case is not possible because the product of two factors with opposite signs is negative, and we are looking for a positive expression.
Case 2: (x^2 - 3) > 0, (x^2 + 4) > 0, (x + 5) > 0, and (x - 3) > 0
This occurs when x > 3, in which case all the factors are positive and the expression is positive.
Case 3: (x^2 - 3) < 0, (x^2 + 4) > 0, (x + 5) > 0, and (x - 3) < 0
This occurs when -5 < x < -3, in which case two of the factors are negative and two are positive, resulting in a negative expression.
Case 4: (x^2 - 3) < 0, (x^2 + 4) > 0, (x + 5) < 0, and (x - 3) > 0
This occurs when -3 < x < -5, in which case two of the factors are positive and two are negative, resulting in a negative expression.
Case 5: (x^2 - 3) < 0, (x^2 + 4) > 0, (x + 5) < 0, and (x - 3) < 0
This occurs when x < -5, in which case three of the factors are negative and one is positive, resulting in a positive expression.
Therefore, the solution set to the inequality is x < -5 or -3 < x < 3, or x > 3.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili