
Вопрос задан 01.05.2021 в 13:47.
Предмет Алгебра.
Спрашивает Беляев Егорушка.
Найдите наименьший положительный период функции y=sinx+tg4x


Ответы на вопрос

Отвечает Натарова Полина.
Ответ: y=sinx + tg4x
T° (sinx)=2pi
T°(tgx)=pi
T(tg4x)=pi/4
Объяснение: T=T°/k, "°" - нулевое



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Период функции синуса равен 2π, а период функции тангенса равен π.
Чтобы найти период функции y = sin x + tg(4x), нужно найти наименьшее общее кратное (НОК) периодов функций sin x и tg(4x).
Так как период тангенса в 4 раза меньше, чем период синуса, можно записать:
НОК(2π, π/2) = 4π
Таким образом, наименьший положительный период функции y = sin x + tg(4x) равен 4π.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili