Вопрос задан 25.04.2021 в 23:27. Предмет Алгебра. Спрашивает Ишимов Кирилл.

1/x-1=2/x+1 x/x-5=x-2/x-6 3/z-2=2/z-3 y+1/y-1=y-5/y-3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пантелеев Андрей.
.....................

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve these equations, we will need to isolate the variable on one side of the equation.

  1. 1/x - 1 = 2/x + 1

    We can start by combining the two terms on the right side of the equation:

    1/x - 2/x = 1 + 1

    Simplifying, we get:

    -1/x = 2

    Multiplying both sides by -1, we get:

    1/x = -2

    Finally, we can isolate x by taking the reciprocal of both sides:

    x = -1/2

    Therefore, the solution to the equation is x = -1/2.

  2. x/(x-5) = (x-2)/(x-6)

    We can start by cross-multiplying:

    x(x-6) = (x-2)(x-5)

    Expanding both sides, we get:

    x^2 - 6x = x^2 - 7x + 10

    Simplifying, we get:

    x = 10

    However, we must check if this solution is valid. We can do this by plugging x = 10 back into the original equation:

    10/(10-5) = (10-2)/(10-6)

    2 = 2

    Since the equation is true for x = 10, the solution is x = 10.

  3. 3/(z-2) = 2/(z-3)

    We can start by cross-multiplying:

    3(z-3) = 2(z-2)

    Expanding both sides, we get:

    3z - 9 = 2z - 4

    Simplifying, we get:

    z = 5

    However, we must check if this solution is valid. We can do this by plugging z = 5 back into the original equation:

    3/(5-2) = 2/(5-3)

    1 = 1

    Since the equation is true for z = 5, the solution is z = 5.

  4. y+1/(y-1) = y-5/(y-3)

    We can start by cross-multiplying:

    (y+1)(y-3) = (y-5)(y-1)

    Expanding both sides, we get:

    y^2 - 2y - 3 = y^2 - 6y + 5

    Simplifying, we get:

    4y = 8

    Dividing both sides by 4, we get:

    y = 2

    However, we must check if this solution is valid. We can do this by plugging y = 2 back into the original equation:

    2+1/(2-1) = 2-5/(2-3)

    3 = 3

    Since the equation is true for y = 2, the solution is y = 2.

Therefore, the solutions to the equations are:

x = -1/2, x = 10, z = 5, y = 2.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос