Вопрос задан 19.06.2018 в 16:42. Предмет Алгебра. Спрашивает Bairak Diana.

Взяли два различных натуральных чисел, эти числа сложили, перемножили, вычли из большего на

меньшее, разделили большее на меньшее сумма всех четырех результатов равна 441. Найдите эти числа
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зимина Маша.

Пусть х и у  искомые числа, x>y.  Тогда из условия:

(х+у)+ ху + (х-у) + х/у = 441

2х + ху + х/у = 441

\frac{x(y^2+2y+1)}{y}=\frac{x(y+1)^2}{y}.=441

Из написанного следует, что х нацело делится на у:  х = ку, где к - натуральный множитель.

Тогда:

k=\frac{441}{(y+1)^2}=(\frac{21}{y+1})^2

Отсюда следует, что:

у+1 = 3                     у+1 = 7                   у+1=21

у1=2, к=49               у2 = 6,к=9              у3=20,к=1

х1=98                      х2=54                     х3=20 (противоречит условию x>y)

Ответ: (98; 2),   (54; 6).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос