
Решите уравнение: 3x^2-7x+4<0


Ответы на вопрос

7+1/6=2/3
7-1/6=1
__+___2/3___-__1___+____
(2/3;1)



Чтобы решить это неравенство, нужно найти корни квадратного трехчлена 3x^2 - 7x + 4 и определить, на каких интервалах функция f(x) = 3x^2 - 7x + 4 меньше нуля.
Сначала найдем корни квадратного трехчлена: 3x^2 - 7x + 4 = 0 (3x - 4)(x - 1) = 0 x = 4/3 или x = 1
Эти две точки разбивают вещественную ось на три интервала: (-∞, 4/3), (4/3, 1), и (1, +∞).
Теперь определим знак функции на каждом из этих интервалов. Подставим точки из каждого интервала в исходное неравенство, чтобы увидеть, когда оно выполняется.
x = 0: 3x^2 - 7x + 4 = 4 > 0, значит, на интервале (-∞, 4/3) неравенство не выполняется.
x = 1/2: 3x^2 - 7x + 4 = 3/4 > 0, значит, на интервале (4/3, 1) неравенство не выполняется.
x = 2: 3x^2 - 7x + 4 = 2 < 0, значит, на интервале (1, +∞) неравенство выполняется.
Таким образом, решением исходного неравенства является интервал (1, +∞).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili