
1) x^2-36/x^2+6x<0 2) x^2+2x-8x/16-x^2 (больше или равно нулю) 3) x^2-6x-7/x^2-49( меньше или
равно нулю) 4) x^2-5x+4/5-x^2>0

Ответы на вопрос

-3x<=-7
x>=7/3
2)4+1/2x>=x
1/2x-x>=-4
-1/2x>=-4
x<=8
3)14-8x>0
-8x>-14
x<14/8
4)2+x/3<3
x/3<3-2
x/3<1
x<3
5)-3(x+7)<(x-2)(x+1)
-3x-21<x^2+x-2x-2>0
1. Введём функцию y=x^2+2x+19, график парабола ветви вверх.
2. Нули функции:
x^2+2x+19=0
D=2^2-4*1*19=4-76=-72
D<0, нулей нет
3.Ответ x принадлежит R
6)(4x+7)-2(3x+1/2)<=0
4x+7-6x-1<=0
-2x+6<=0
-2x<=-6
x>=3



Let's solve each inequality step by step:
- x^2 - 36 / (x^2 + 6x) < 0
To solve this inequality, we need to find the critical points where the expression equals zero or becomes undefined. These points are when x^2 + 6x = 0 and when x^2 + 6x = -36.
x^2 + 6x = 0 x(x + 6) = 0 x = 0 or x = -6
x^2 + 6x = -36 x^2 + 6x + 36 = 0 (x + 3)^2 = 0 x = -3
Now, we can create a sign chart to determine the intervals where the expression is positive or negative:
-∞ -6 -3 0 +∞
- | - | 0 | + | +
From the sign chart, we can see that the expression is less than zero (-) when x is between -6 and -3, inclusive. So the solution to the inequality is -6 ≤ x ≤ -3.
- x^2 + 2x - 8x / (16 - x^2) ≥ 0
First, we need to find the critical points where the expression equals zero or becomes undefined. These points are when x^2 + 2x - 8x = 0 and when 16 - x^2 = 0.
x^2 + 2x - 8x = 0 x^2 - 6x = 0 x(x - 6) = 0 x = 0 or x = 6
16 - x^2 = 0 x^2 = 16 x = ±4
Now, let's create a sign chart:
-∞ -4 0 4 6 +∞
- | - | 0 | + | + |
From the sign chart, we can see that the expression is greater than or equal to zero (+) when x is less than -4 or between 0 and 4, inclusive. So the solution to the inequality is x < -4 or 0 ≤ x ≤ 4.
- x^2 - 6x - 7 / (x^2 - 49) ≤ 0
We need to find the critical points where the expression equals zero or becomes undefined. These points are when x^2 - 6x - 7 = 0 and when x^2 - 49 = 0.
x^2 - 6x - 7 = 0 (x - 7)(x + 1) = 0 x = 7 or x = -1
x^2 - 49 = 0 (x - 7)(x + 7) = 0 x = 7 or x = -7
Let's create a sign chart:
-∞ -7 -1 7 +∞
- | - | 0 | - | - |
From the sign chart, we can see that the expression is less than or equal to zero (-) when x is between -7 and -1, inclusive. So the solution to the inequality is -7 ≤ x ≤ -1.
- x^2 - 5x + 4 / (5


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili