
8 в степени 2n + 4 в степени 3n = 2 в степени 5n+1. Помогите
решить пожалуйста

Ответы на вопрос

8^2n+4^3n=2^(5n+1)
2^6n+2^6n=2^(6n+1), т.е. 2^(6n+1)=2^(5n+1) отсюда следует n=0
ответ: n=0



Для решения данного уравнения, необходимо привести его к общему виду и найти значения переменной.
Уравнение: 8^(2n) + 4^(3n) = 2^(5n+1)
Первым шагом заменим 8 и 4 на 2 в соответствии с их эквивалентными степенями:
(2^3)^(2n) + (2^2)^(3n) = 2^(5n+1)
Применим свойство степени степени, умножив показатели степени:
2^(6n) + 2^(6n) = 2^(5n+1)
Теперь объединим одинаковые слагаемые, используя свойство сложения степеней с одинаковым основанием:
2^(6n) + 2^(6n) = 2^(5n) * 2^1
2 * 2^(6n) = 2^(5n) * 2^1
Упростим обе части уравнения, сократив 2^(6n):
2^(6n) = 2^(5n) * 2
Теперь, когда основания равны, можно приравнять показатели степени:
6n = 5n + 1
Вычтем 5n из обеих частей уравнения:
6n - 5n = 1
n = 1
Таким образом, решением данного уравнения является n = 1.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili