
2log^36(2x-7)=log^6(14-x)


Ответы на вопрос

А что означает log?пек



I hope this helps you




To solve the equation 2log₃₆(2x-7) = log₆(14-x), we need to express both sides of the equation using the same base.
Let's start by converting the logarithms to a common base. We'll convert them to the base 10 logarithm:
2log₃₆(2x-7) = log₆(14-x) Using the change of base formula, we can rewrite these logarithms:
2(log(2x-7) / log(36)) = log(14-x) / log(6)
Now we can simplify further.
First, let's simplify the right side:
2(log(2x-7) / log(36)) = log(14-x) / log(6) 2(log(2x-7) / log(36)) = log(14-x) / (log(2) + log(3)) 2(log(2x-7) / log(36)) = log(14-x) / log(2) + log(3)
Next, let's simplify the left side:
2(log(2x-7) / log(36)) = 2(log(2x-7) / log(6^2)) 2(log(2x-7) / log(36)) = 2(log(2x-7) / (2 * log(6))) (log(2x-7) / log(36)) = log(2x-7) / log(6)
Since the left and right sides are equal, we can equate the corresponding parts:
log(2x-7) / (2 * log(6)) = log(14-x) / (log(2) + log(3))
To further simplify, let's multiply both sides by (2 * log(6)) and (log(2) + log(3)) to eliminate the denominators:
(log(2x-7) / (2 * log(6))) * (2 * log(6)) * (log(2) + log(3)) = (log(14-x) / (log(2) + log(3))) * (2 * log(6)) * (log(2) + log(3))
The (2 * log(6)) terms cancel out, as well as the (log(2) + log(3)) terms:
log(2x-7) * (log(2) + log(3)) = log(14-x) * (2 * log(6))
Now, we can expand and simplify further:
log(2x-7) * log(2) + log(2x-7) * log(3) = (2 * log(6)) * log(14-x)
Now we can use the properties of logarithms to simplify this equation further. Using the rule logₐ(b) + logₐ(c) = logₐ(bc), we can rewrite the equation as:
log₄₈((2x-7)^log(3)) = log₆((14-x)^(2 * log(6)))
Now that the bases are the same, the arguments inside the logarithms must be equal:
(2x-7)^log(3) = (14-x)^(2 * log(6))
Solving this equation requires further algebraic manipulation and possibly numerical methods. However, it's worth noting that the equation provided is a highly complex equation, and it might not have a simple algebraic solution.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili